The kinetic mechanism of bacterial ribosome recycling

نویسندگان

  • Yuanwei Chen
  • Akira Kaji
  • Hideko Kaji
  • Barry S. Cooperman
چکیده

Bacterial ribosome recycling requires breakdown of the post-termination complex (PoTC), comprising a messenger RNA (mRNA) and an uncharged transfer RNA (tRNA) cognate to the terminal mRNA codon bound to the 70S ribosome. The translation factors, elongation factor G and ribosome recycling factor, are known to be required for recycling, but there is controversy concerning whether these factors act primarily to effect the release of mRNA and tRNA from the ribosome, with the splitting of the ribosome into subunits being somewhat dispensable, or whether their main function is to catalyze the splitting reaction, which necessarily precedes mRNA and tRNA release. Here, we utilize three assays directly measuring the rates of mRNA and tRNA release and of ribosome splitting in several model PoTCs. Our results largely reconcile these previously held views. We demonstrate that, in the absence of an upstream Shine-Dalgarno (SD) sequence, PoTC breakdown proceeds in the order: mRNA release followed by tRNA release and then by 70S splitting. By contrast, in the presence of an SD sequence all three processes proceed with identical apparent rates, with the splitting step likely being rate-determining. Our results are consistent with ribosome profiling results demonstrating the influence of upstream SD-like sequences on ribosome occupancy at or just before the mRNA stop codon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome

The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling f...

متن کامل

Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast.

Although well defined in bacterial systems, the molecular mechanisms underlying ribosome recycling in eukaryotic cells have only begun to be explored. Recent studies have proposed a direct role for eukaryotic termination factors eRF1 and eRF3 (and the related factors Dom34 and Hbs1) in downstream recycling processes; however, our understanding of the connection between termination and recycling...

متن کامل

Mechanisms and Inhibition of EF-G-dependent Translocation and Recycling of the Bacterial Ribosome

Borg, A. 2015. Mechanisms and Inhibition of EF-G-dependent Translocation and Recycling of the Bacterial Ribosome. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1268. 60 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9289-2. The GTPase elongation factor G (EF-G) is an important player in the complex process of protein synthesis ...

متن کامل

Distinct functions of elongation factor G in ribosome recycling and translocation.

Elongation factor G (EF-G) promotes the translocation step in bacterial protein synthesis and, together with ribosome recycling factor (RRF), the disassembly of the post-termination ribosome. Unlike translocation, ribosome disassembly strictly requires GTP hydrolysis by EF-G. Here we report that ribosome disassembly is strongly inhibited by vanadate, an analog of inorganic phosphate (Pi), indic...

متن کامل

The review of pathogenic mechanism of Aeromonas hydrophila and action of tetracycline against it in aquatic animals

Aeromonas hydrophila is one of common bacterial disease in aquatic animals and its outbreak cause to decrease of aquatic production. Aeromonas disease is due to a protein toxin, aerolysin that exported by Aeromonas hydrophila. This protein toxin forms channels on target cells membrane, disrupting normal activities and cause to destruction and death of them. Aerolysin toxic protein is secreted b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017